首席数据官

Hi, 请登录

感悟篇:我在B端做数据分析(一)

一、写在前面

最近也越来越喜欢Dambisa Moyo的这句话,

“The best time to plant a tree was 10 years ago. The second best time is now.”

我是西索,距离2011年6月22日,到现在是真正意义上做了十年数据分析,十年前没有种好树,十年后我想重新开始积累。工作之后的前两年是面向于C端的零售行业,余下的八年都沉浸在B端领域里面,研究数据增值、变现的场景。

二、为什么要写这篇文章?

前一阵子在[一个数据人的自留地]群里发了一个问题:

对于to B的公司,要不要做企业画像? 如何做企业画像? 结果一石激起千层浪,大家讨论非常热烈。原来一直以为用户画像在to C的公司用的比较多,没想到服务B端的企业也有这么多人在关注,大家一致认为企业画像是有必要的。然而大家的分歧在于:如何做?人肉做,还是大数据,是否需要用到大数据?

和simba大佬聊完之后,大佬出了一系列文章,分享了如何做B端的画像。看完之后产生了一些感触和想法,C端的分析案例一搜一箩筐,但是B端的案例是真的少。

simba:一篇文章让你掌握企业画像

老实说,数据就是一团浆糊,越搅越糊,至今还没怎么真正把数据的价值和意义搞懂,每天一个踩坑知识点,过山车一样的刺激,懂的人自然懂。于是就想把过去在B端里面的分析场景整理出来进行分享,一方面给过去这十年做一个简单的复盘,另一方面也看看能不能得到一些共鸣,产生新的idea,欢迎私信来交流。

做数据,欲速而不达,慢就是快,需要稳扎稳打把脉络理清楚,后面在应用的时候就会清晰很多。

三、B端的数据,得看的远管的宽,才显专业

在B端做分析,时刻记牢的几个关键要素:“营收”、“影响”、“知名度”。

首先必须是“营收”,区别于C端消费,B端的决策周期长,从触达到产生订单之间的过程很难做归因,对数据而言,获取线索比直接看;

然后才是“专业”,需要对生意、行业、企业经营、业务(市场、营销、供应链仓储物流、商品、运营、客服、研发)上的概念有比较全面的了解,否则很难和业务保持在同一个沟通层面,很容易被评价为不懂业务;

再后就是“方法”,在B端如果能往外延伸触达到客户,所接触到的对象非富即贵,不是老板就是高官,不同的场合下用的“道”、“术”、“器”都进行区别,变则通,见人说人话,见鬼说鬼话;

3.1 这些B端业务上的一些核心业务指标,老板们都喜欢看

合同金额、付费用户数、付费转化率、用户客单价、用户流失率、商机线索量、市场占有率;

3.2 这些B端业务上的一些主要分析场景,领导们都喜欢听3.3 这些B端业务上的一些主要算法场景,同事们都喜欢吹四、说下B端常见的一些用户分类

对于绝大多数B类用户的研究,接触到的对象一般都是以中小型的B端公司为主;只有在KA用户里面,有少部分是真正大规模的企业、品牌商,这类公司的组织形态又极其复杂,可能所对接的业务只是贵司其中很小的一个模块而已。

wcdma始终同步对数据业务的影响_wcdma始终同步对数据业务的影响_wcdma数据业务优化

五、说下B端常见的业务类型

产品是B端业务的根本,市场开发是业务营收的关键,而服务是业务稳定增长的核心。

通过服务扩散产品价值增益,维护老客的稳定接触,建立市场口碑,吸引更多的新客户。

六、对比B/C端数据的一些特征

不同的业务下,产品模式不一样,在结果体现上区别就会更大wcdma始终同步对数据业务的影响,以至于有很多业务线上的数据量级极小,甚至于根本谈不上大数据分析,就更谈不上所谓的算法和工程。

七、用户-业务-产品-数据,才是好的链路顺序

通过下表,对比下B端和C端之间的场景差异。

7.1 用户差异

7.2 业务差异

7.3 产品差异

e.g 以salseforce 为例,对于它的产品周期:

1. 最早提出SaaS的模式,这是一种全新的商业模式;

2. 后来以CRM 为突破口,建立了一个完整的以客户为中心的,售前(营销)、售中(销售、履约)、售后(客服)全链路的软件服务,可以看出他的产品就是围绕商业模式展开,战略就是围绕客户开展的一系列工作流程。

3. 到现在云计算, 促使他产生了几朵云,营销云, 销售云,客服云,而大数据又促使ta产生了 分析云,AI 又产生了AI 客户之类的服务;

7.4 行为差异

7.5 数据差异

wcdma数据业务优化_wcdma始终同步对数据业务的影响_wcdma始终同步对数据业务的影响

八、社会才是最好的大学,都会有起有伏

每个人在离开学校,踏入社会的大门开始,都会经历很多个成长周期。在传统行业的产品管理中,有产品生命周期的一套理念,套用到职业生涯,应该也是可以的。

对应上面的四张图,我周边很多朋友在毕业没多久就如第一个图的呈现,起点高,偶尔有起伏,站的总归一直在高处。回看我自己的职业生涯,觉得应该比较贴切右边最后一张,职场进阶的道路上虽然曲曲折折,但是总会在一个小周期之后能得到突破。

九、入门难,深造更难,不要沉迷于工具带来的爽感

不得不说,初入职场的前几年,特别沉迷于数据本身而不是业务,以及对各种数据处理技巧的深层次研究,用VBA、R、SPSS、Python不同的软件去自研各种自动化的小工具,小有成就。

工具毕竟只是工具,就跟打游戏开荒一样,当每个模块、功能都尝试用过一遍之后,就丧失了兴趣,数据分析不过如此,几年之后就索然无味了,分析无用。当对一件事情失去了兴趣和焦点,整个人就会变得很浮躁,傲慢、漫不经心、焦躁、忧虑……以及冲动,我想辞职!

庆幸的是,碰到了一些比好的领导,都是人生中的引路人,在状态极其不好的时候,给予方向上的指导,给了很多选择。

有一阵子,内心浮躁,无所事事。领导说有机会就跟着市场、营销、工程的同事去接触接触业务,如果可行,以后转型也方便。后面就跟着事业部的业务同学去拜访客户,到用户现场参观,了解产品是如何在用户公司使用的,到一线听他们的吐槽(大部分是骂声)。人间清醒是客户,付了钱,产品哪里好用、哪里有问题,意见反馈、客服电话打了一通又一通,这些都是从结构化的数据里面看不出来的。

有种说法是说客服才是一家公司最懂业务的人,只要他们想,随时可以去挑战任何一个产品、技术和业务!

在B端用户分析里面,很多时候通过数据分析在异常上找不到的原因,在用户现场指不定就茅塞顿开了。为什么这个用户原来很活跃,一个时间点之后,它就不活跃了,因为它的业务主体发生变更了,老板原来的确是做这个细分板块业务的,有一天他朋友来合伙投资,整体业务方向就变了;为什么这个用户的营业额突然就下降了,因为他们家老板又开了家子公司,还是同一拨人,当地有小企业扶持政策,还可

试看结束,如继续查看请付费↓↓↓↓
打赏0.5元才能查看本内容,立即打赏

来源【首席数据官】,更多内容/合作请关注「辉声辉语」公众号,送10G营销资料!

版权声明:本文内容来源互联网整理,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 jkhui22@126.com举报,一经查实,本站将立刻删除。

相关推荐

二维码
评论