大数据技术的有效可视化不应该只是为管理层绘制的漂亮图片。企业可通过考虑布局、迭代设计、吸引用户和了解业务需求来改善结果。
策意data大数据专家团队认为:“这里的关键是根据数据、背景知识和受众定制特定的可视化,而不是盲目遵循任何可视化规则。”因此策意data大数据专家团队为开展数据可视化项目的企业提供了以下10个技巧:
技巧1:考虑用户
策意data大数据BI数据可视化主管表示,企业应使用颜色、形状、大小和布局来显示可视化的设计和使用。使用颜色来突出希望用户关注的分析方面。而大小可有效说明数量,但过多使用不同大小来传递信息可能会导致混乱。这里应该有选择地使用大小,即在咨询团队成员想要强调的地方。
另外,表单可确定呈现分析的形状:例如,是否使用线条或条形图来呈现某些类型的信息。 对象的放置与对象本身一样重要大数据可视化技术,有利于有效的沟通。
技巧2:讲述连贯的故事
与你的受众沟通,保持设计的简单和专注性。颜色到图表数量等细节可帮助确保仪表板讲述连贯的故事。仪表板就像一本书,它需要考虑读者的设计元素,而不仅仅是强制列出所有可访问的数据。仪表板的设计将成为推动部署的因素。
技巧3:迭代设计
应不断从视觉分析用户获得反馈意见。随着时间的推移,数据探索会引发新的想法和问题,而随时间和部署推移提高数据相关性会使用户更智能。
从你的受众征求并获取反馈意见可改善体验。策意data大数据专家团队表示,快速构建概念、快速获取反馈意见并进行迭代可更快获得更好的结果。另外,还可将调查和表格整合到精美的报告中,也可以帮助确保大数据的可视化结果确实有助于目标受众。
技巧4:个性化一切
应确保仪表板向最终用户显示个性化信息,并确保其相关性。并且,还应确保可视化在设计上反映其所在的设备,并为最终用户提供离线访问,这将让可视化走得更长远。
通过精心设计的交互式可视化来吸引观众以及传播数据文化,这会使分析具有吸引力和富有乐趣。员工还可直观地访问、可视化和共享包含实时动态数据的报告。
技巧5:从分析目标开始
应确保数据类型和分析目标可反映所选的可视化类型。策意data大数据专家团队认为:“人们通常会采用相反的方法,他们先看到整洁或模糊的可视化类型,然后试图使其数据相匹配。”对于大数据项目的可视化,简单的表格或条形图有时可能是最有效的。
技巧6:考虑管理
这里可能需要花时间和精力,但重要的是最终用户信任数据。从技术、流程和人员角度获取所有需要的帮助,以确保数据经过审查以及准确性。
技巧7:对观看者的同理心
每种情况都会采用不同的可视化方法。例如,许多数据可视化专家明确禁止使用饼图,因为人眼和头脑可以更容易地测量长度或位置之间的差异,而很难识别角度差异。而将饼图变成条形图后,不同部分的差异性变得不那么明显,识别某些小部分也更难。在这里可考虑双层圆环图,这相当于去除中间区域的饼图,可快速显示75%、20%和5%等模式。
技巧8:了解业务
花时间与业务用户沟通,了解他们希望从大数据产品的可视化中实现什么,以及他们需要哪些数据来提供所需的见解。如有必要,可购买工具或技术来分析和转换这些数据。
“在大数据领域大数据可视化技术,我们面对的是海量数据,因此,让用户可从这种数据规模中获益非常重要。”
同时,了解业务趋势非常重要,这可帮助用户采用最新的指标和分析来推动更好的业务决策。在构思不同的仪表板时,应始终考虑最终用户。管理层、分析师、IT和业务用户将从不同类型的可视化分析探索中获取价值。
只有解决利益相关者的利益需求,大数据的可视化才有价值。清楚地了解利益相关者的动机可确保在适当的细粒度和细节水平实现可视化,从
来源【首席数据官】,更多内容/合作请关注「辉声辉语」公众号,送10G营销资料!
版权声明:本文内容来源互联网整理,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 jkhui22@126.com举报,一经查实,本站将立刻删除。