今天这篇文章,想给大家介绍一下面板数据如何在SPSSAU中实现。
面板数据(panel data)是指不同对象在不同时间上的指标数据。面板数据在计量经济学和实际生活中广泛存在。
面板模型是针对面板数据进行分析,面板数据是一种特殊的数据格式。比如当前研究100家公司5年的财务数据。100家公司,每家5年,最终会有100*5=500行数据。
如果说100家公司全部都有完整的5年数据,即100*5=500行数据,这种叫平衡面板数据。如果说某家公司只有3年的数据,意味着有2年的缺失数据,这种叫非平衡面板数据。
使用SPSSAU进行分析时,‘个体ID’就是下图中的‘公司编号’,‘时间’就是下图中的‘年份’。‘公司编号’一般是指上市公司的股票代码面板数据分析,也或者只是个编号均可;‘年份’一般是指年或者时间点。‘公司编号’和‘年份’两项共同用于告诉系统当前为面板数据,通常无其它意义。
面板数据分析
(一)数据格式
如下图中面板数据分析,展示的就是一个面板数据的例子。数据为9个地区2008~2018共11年的各项经济指标数据。
接上表
地区列反映的是数据不同的截面,即不同的研究个体。日期列反映了数据的时序性,即反映不同时期的数据。面板数据是二者的结合,上传数据时需要注意标识出研究个体编号(地区)和时间点(年份)分别是什么。
(二)模型识别
面板数据进行回归影响关系研究时,即称为面板模型(面板回归)。
一般情况下,面板模型可分为三种类型,分别是FE模型(固定效应模型),POOL模型(就是普通的OLS回归)和RE模型(随机效应模型)。
最终应该选择哪个模型,可通过各个检验进行判断。SPSSAU分别进行F检验,BP检验和Hausman检验(豪斯曼检验),结合三个检验,最终判断出哪个模型最优。
如果是经济类数据,多数情况下FE模型更优,因而很多研究直接默认不检验直接使用FE模型;一般情况下,三种模型的选择上有区别,但结论上一般区别不会太大。
(三)SPSSAU操作
案例:这里我们以上面提到的9个地区的11年的数据作为案例数据,用以说明。
数据中包括X1(城乡居民年末储蓄存款), X2(年末常住人口), X3(城镇化率), X4(教育支出)共4个自变量,因变量为GDP。
SPSSAU面板模型
研究4个自变量对于因变量GDP的影响,并且需要标识出面板数据,分别将地区和日期放入对应的‘个体ID’和‘时间’框中。
(四)结果分析
SPSSAU共输出3类表格,分别是检验汇总表格,面板模型结果汇总表格,模型中间过程结果表格。
分析步骤参考SPSSAU提供的“分析建议”及“智能分析”。本案例中通过检验给出最终选择“FE模型”。
SSP
来源【首席数据官】,更多内容/合作请关注「辉声辉语」公众号,送10G营销资料!
版权声明:本文内容来源互联网整理,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 jkhui22@126.com举报,一经查实,本站将立刻删除。