首席数据官

Hi, 请登录

2017年为什么我一定要学深度学习

对于深度学习,我也是一个初学者,这篇文章只是我的个人想法,能力有限,所以对不对,不好说,但的确是我现在的真实想法,我也会按这个思路去尝试。请大家带着质疑精神去读吧。

我大概是一个好奇心很重的人,所以每次有新的技术出来,我都会在第一时间跟进。但我又是一个记性不太好的人,大部分研究过的新技术,因为没有天天用,很快又都忘掉了。

深度学习刚开始流行的时候,我就做过简单的学习。当时我的结论是短期内,深度学习只能在弱智能徘徊,很难进展到强智能。

这个结论在今天看来,也不算过时。但真正被深度学习给 Shock 到,是去年和某教育 APP 的 CEO 同学聊天。他告诉我,在教育这个垂直领域,他们的语音识别率已经比讯飞要高了,依赖于大量的数据;更 NB 的是,加上 NLP,他们的 AI 已经可以帮老师改主观题了。主观题啊深度学习 机器学习,就是数学的问答题,语文的作文。

这让我开始重新思考弱智能。

完全依靠强智能的应用场景,会产生很多问题。比如自动驾驶,要想在中国这种各种奇葩状况层出不穷的交通环境下运行,一时半会儿是不行。即使是一个看起来简单的问答机器人,也没一家真正做好,你多问 siri 几句,她很快就晕了。

经常关注我微博同学会知道,我最喜欢说的一句话就是:「能自动化的,要自动化;不能自动化的,要半自动化」。

深度学习 机器学习_机器人的深度学习_深度学习与机器学习

人工智能上,这个法则似乎依然是有效的。既然现在强智能还不够强,那么为什么我们不用弱智能+人工确认的方式,来实现「半智能化」呢:用机器帮你做预选,你来做最终选择,虽然依然包含了人工干预,但却可以把生产效率提升几十倍。

有同学和我说,找不到应用深度学习的场景,这是因为太执着于强智能,想让机器独立处理所有事情;如果使用「半自动化」的思路,你会发现遍地都是场景。

最典型的场景就是「按需求进行组合搭配」。拿今天正式上线的小程序举例子吧,小程序在框架层上,将功能分隔到了page 的粒度,这使得小程序的组件会很好的被重用;而在设计上,小程序提供了统一的官方指导风格,所以不会出现太多个性化的东西。

我需要一个用户资料管理, xpm install user-profile;我需要动态 Feed 流,xpm install feed-timeline 。

然后这货就喊着要去做,还在 GitHub 上开了个坑,据说 SDK 已经写完深度学习 机器学习,安装器年前能开始内测。

然后我告诉他,你得赶紧做,从长远看,通用应用最后是不太值钱的,因为很快就有开源项目把它做得很好。真正值钱的是,下沉到行业里边的应用。比如说吧,同样是用户资料页,房地产行业的、猎头行业的以及技术社区的会完全不一样。但区别也就是添加几个行业特定的字段而已。 大量的「二次开发」工作,才是最为琐碎又最为挣钱的。

这就是典型的可以用上深度学习的场景。通过抓取对应行业的 H5 页面,我们很快就可以把各个行业需要哪些可能的字段给整理出来,然后把这些交给机器进行学习,当再有新的需求进来的时候,机器就可以自动配好预设字段。机器会出错么?当然。但哪怕是80%的准确率,也已经可以节省掉好几个程序员了。

深度学习 机器学习_机器人的深度学习_深度学习与机器学习

为什么我要学深度学习? 因为这背后是 TM 白花花的银子。

这是近在眼前的机会,我再说个远点的。大家知道,日本人的科技树一般都不按套路长。早稻田大学一心想把深度学习用在二次元上,他们先是搞了个项目给黑白画稿上色;后来又发了篇论文给草稿描线。我觉得很快,他们就要开始学习漫画大家的画风,通过线稿生成原稿了。

「传统」的日漫或许很难由机器生产,但现在社交网络上大量生产的「条漫」却对画质要求不高。尤其是四格类的,经常关注我的同学应该看过我用 Comipo!软件「绘制」的四格漫画。( ) 当机器参与进来后,根据脚本生成这种品质的漫画简直易如反掌。到时候,人人都能过上1%的生活。

为什么我要学习深度学习?因为我要让未来早点来。

上周我发了条微博,说2017年要自学深度学习,有过千的同学表示愿意一起来学。

深度学习 机器学习

也有同学表示,机器学习不是那么好学的。其实细心的同学会发现,我一直说的是「深度学习」

试看结束,如继续查看请付费↓↓↓↓
打赏0.5元才能查看本内容,立即打赏

来源【首席数据官】,更多内容/合作请关注「辉声辉语」公众号,送10G营销资料!

版权声明:本文内容来源互联网整理,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 jkhui22@126.com举报,一经查实,本站将立刻删除。

相关推荐

二维码
评论