首席数据官

Hi, 请登录

大数据对于实时数据的分析,目前有哪些应用场景?

苏格兰科学家凯尔文曾经说过:"科学的灵魂和使命就是其有效的应用,…知识的力量是要为人类造福”,这句话在如今大数据热潮下更加恰如其分。当今是一个信息爆炸时代,我们每天看到、听到、接触到大量的信息。而随着互联网企业的快速兴起,市场竞争的不断加剧,越来越多的企业认识到信息与数据分析的重要性,纷纷投入人力物力进行数据资源整合,提高数据挖掘能力,希望能够通过数据分析助力业务转型、创新和持续发展。尤其是近几年,数据分析和商业智能在国内的迅速普及,充分体现了数据分析在商业决策中的核心价值和战略意义。如今的商业决策,绝不仅仅只是基于以往经验的定性分析,它还可以是通过数据和逻辑一步步量化得到最优解,从而使得风险最低、利润最大。随着大数据的在各行各业中的广泛应用,越来越多的国内外公司开始重视基于数据的商业决策。我们来看几个场景:

1、某电商公司为了刺激消费打算发放一批优惠券,那么你作为电商公司的CEO,如何针对不同的用户特点指定合理的策略合理发放优惠券,才能使得成本最小,同时收益最大呢?

2、某互联网公司,为了获取更多的曝光率、流量和转化率,决定在原来比较优质的硬广、SEM、内容营销、SEO、自媒体广告、线下讲座、口碑营销这几个渠道上,增加一笔营销推广预算,你作为市场部的总监,如何基于之前的投放经验运营商大数据应用场景,合理安排使用这笔营销推广预算,使得曝光率、转化率最大化呢?

3、某电商公司的客服部门,有全职员工和兼职员工两种职位运营商大数据应用场景,全职员工有3个工作时段、兼职员工有4个工作时段,这两种不同员工的报酬是不同的,作为部门总监,在不同的时段如何安排全职员工和兼职员工的组合,能在服务质量达标的前提下,使得人力成本最小?

4、某软件公司有3个研发组,当前需求池中有85个需求,分为A、B、C、D四类,通过预算的数据分析得到了各个开发组的完成各类需求的效率和各个开发组的能力上限,作为部门负责人,如何安排公众了才能在最短时间内完成全部需求?

5、某零售公司,通过数据分析知道了不同四类不同用户的人均GMV、利润率、利润贡献率,以及每个用户的运营成本、人力成本、,不同类型用户的流失率和好

试看结束,如继续查看请付费↓↓↓↓
打赏0.5元才能查看本内容,立即打赏

来源【首席数据官】,更多内容/合作请关注「辉声辉语」公众号,送10G营销资料!

版权声明:本文内容来源互联网整理,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 jkhui22@126.com举报,一经查实,本站将立刻删除。

相关推荐

二维码
评论