首席数据官

Hi, 请登录

我是如何从会计转行到数据分析

本文不推荐什么大社群!不推荐课程!只是简明地描述一下我是如何转行到数据分析岗的。

先说说自身情况吧: 16年本科毕业,专业财务管理 。在家乡,一个二线城市,做会计做了一年多(包括实习期)。这一年多,把我从一个会计粉转变成一个会计黑,期间的辛酸在我某个回答里有写上一些。有转行的念头是16年7月,当时就是刷刷知乎,百度一下,了解了数据分析岗的状况,16年10月正式开始准备。后来不满意准备的进度,2017年3月提出离职申请,待业在家学习,直至8月份在广州才拿到稍微满意的offer。薪资确实翻了个倍还有多,但也依托于以前会计岗位的薪资实在太低太低。

16年10月,从转行数据分析,还是考二线城市的公务员两个选项中挣脱出来,最终没听父母的,选择了数据分析这个无底洞。 刚开始,我是查看拉勾网上的公司岗位招聘要求,然后才决定我需要准备什么知识。 当时拉勾网的广州数据分析师岗几乎都被我翻完了,总结了下需要做以下几点准备;

统计学相关知识excel的熟练使用,报表关联,数据透视等。SQL语法,了解数据库知识。python或则r,需要有建模能力。业务理解能力。项目经验

1,统计学相关知识:

先看了《商务经济与统计》第十二版,当时看起来真的蛮吃力的,自己定的目标,比如一天看一章,根本完成不了,断断续续看了接近两个月,才看到12章。也越发发现在职学习真的需要很大的毅力,并且上班时候总是有一个念头:好浪费时间啊。直到后面我又买了一本统计学书籍《深入浅出的统计学》。对比上本书python高维数据可视化,真的可读性高很多,书里的案例很生动,里面的题目也不会太难,学起来相当有成就感,很快就把整本书看完了。因此也爱上了这个系列的书籍python高维数据可视化,又购买了,深入浅出的数据分析和深入浅出的SQL。但发现这里两本有些啰嗦,并没有看完这两本书。

2,excel的熟练使用,报表关联,数据透视等:

以前做财务就是一个十足的表哥,一直对excel比较有信心,所以这方面我没有过多的复习。直到现在工作了,目前使用的是google.docs一个类excel工具,excel的公式也是能在这里使用,才发现自己的excel能力其实很弱。比如,我以前做财务写的公式是这样子的:

现在我写的公式是这样子的:

也是因为以前做财务的时候不用写有关业务逻辑的公式吧。还有表和表的关联也是个难点。推荐一下excel比较好的教程吧:  /p/24 084300

3,SQL语法,了解数据库知识:

虽说买了深入浅出的SQL,因为记得当时已经是我4月份了,当时定目标是5月找到工作(虽然最后8月才找到orz),所以觉得看书太耗费时间了,直接看的是w3c的sql教程:  /sql/ 。看完后直接动手做面试题:  /qaz13177_ 58_/article/details/5575711/ 。还要了解下SQL语法的顺序(很重要!)然后面试SQL的笔试题基本没啥问题了。反正面试时的笔试,印象中都会做。还有数据库的知识推荐很多人推荐的一本:《MYSQL必知必会》吧(然而我并没准备这方面知识,好像也不太影响。)

4,python或则r,需要有建模能力:

python和r,我选了python。单纯觉得python好听!面试了16家,其中只有3家公司是真正要求需要用到python或则r进行数据分析的,所以觉得这两门语言并不是必备项。当时看的书籍是pandas作者写的《利用python进行数据分析》至今工作后仍在温习,跟着代码打一遍,受益匪浅。

还有建模知识: 现在我越发怀疑数据分析所说的建模只是类似“漏斗模型”等等的业务模型,并非机器学习模型。 因为数据分析岗必须用到机器学习模型的岗位几乎没有。只是你懂机器学习是一个加分项,工作时多一个技术层面分析数据而已。不过当时的我并不知道这些啊,傻傻的也准备机器学习来;首推当然是吴恩达老师在coursea的课程《Machine Learning》然后是周志华老师的西瓜书(我只看了一点点。)当时接触了这些,我感觉机器学习好难好难,根本不可能在两三个月内了解完常用模型的原理。后来我就用野路子了:不去了解原理,只是去用机器学习python的包:sklearn!,至少我能用模型。Sklearn的学习当然是  /stable /index.html

Sklearn的官方文档,写的很详细,也会推荐文献去让你学习原理,虽说是英文的,但你可以和我一样用谷歌浏览器把它翻译呀!

5,业务理解能力:

6,项目经验:

没有项目,凭什么一个转行人士说你懂数据分析?所以,我乖乖的去做项目了。可能你觉得一个转行人士哪有项目啊?实际上,想要有项目经验,真不难!我总结了有以下途径:

除了面试的准备,还想提醒大家需要避免的几个误区:

在知乎的数据分析版块已逛好久,越发觉得这版块营销味浓厚,也请大家带着怀疑的态度去看。有些营销味浓厚到已经影响我观看知乎的体验了。

为此,也和大家分享下零基础转行需要注意的几个误区,毕竟我(文科生)也是零基础过来的,说说我觉得有几个必须要注意的误区吧。

1, 数据分析岗大多数用不到python与r!机器学习更是用不到!

以我目前的工作为例,我用到的工具是google.docs(类excel工具),和ppt.word.sql等等。而python和r是非必要工具,感觉像是简历中的加分项,当然我也认为数据分析需要必备掌握其的中一门,但是这并非求职中的必备项。机器学习就更不用说了,还是先理清自身公司数据的异常值,数据准确度,数据指标的逻辑等等吧。乱脏数据都没理清,谈何建模。若你想快速进入数据分析岗,python和r可以入岗之后学,专心做一两个项目出来才是关键!

2, 认为数据分析岗普遍工资很高!

在知乎文章看多了,觉得转行就有9K上万,现在想想也是醉了,感觉做到这个数字的人。应该有他的原因,但我认为如果条件和我

试看结束,如继续查看请付费↓↓↓↓
打赏0.5元才能查看本内容,立即打赏

来源【首席数据官】,更多内容/合作请关注「辉声辉语」公众号,送10G营销资料!

版权声明:本文内容来源互联网整理,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 jkhui22@126.com举报,一经查实,本站将立刻删除。

相关推荐

二维码
评论