无论数据是大大小小,是旧数据还是新数据,传统数据还是现代数据,无论是在内部还是在云端机器学习 算法总结,对数据质量的需求都不会改变。处于从大数据和其他新数据资产中获取业务价值的压力下的数据专业人员可以利用现有技能,团队和工具来确保大数据的质量。即便如此,仅仅因为您可以利用现有技术也不意味着这就是您应该做的。我们必须使现有技术适应当前时代的要求。
数据专业人员必须调整,优化和扩展数据质量及相关数据管理最佳实践,以适应大数据和类似现代数据集的业务和技术要求,才能保护传统企业数据的质量。 除非组织两者都做,否则它可能无法提供所有数据资产所期望的那种可信分析,操作报告,自助服务功能,业务监控和治理。
调整和优化使数据质量任务与大数据相关
好消息是,组织可以将当前的数据质量和其他数据管理能力应用于大数据。但是组织仍然需要了解并进行某些调整和优化。熟悉的数据质量任务和工具功能与大数据和其他有价值的新数据资产(从Web应用程序,社交媒体,数字供应链,SaaS应用程序和物联网)高度相关,如下所示。
数据质量工具长期以来一直支持业务规则,以自动做出一些开发和补救决策。业务规则并没有消失-多种类型的用户仍然发现它们很有用,许多用户拥有庞大的规则库,他们无法放弃。
业务规则与新的自动化方法结合在一起,新的自动化方法已经出现在各种数据管理工具中机器学习 算法总结,包括数据质量工具。这些通常采用智能算法的形式,这些算法基于人工智能和机器学习来应用预测功能,以自动确定数据状态,要应用的质量功能以及如何与开发人员和用户协调这些动作。
Minitab是质量改进和统计学教育方面领先的软件和服务提供商。Minitab 通过提供一套全面的一流统计分析和过程改进工具,帮助公司和机构找出趋势、解决问题和发掘宝贵见解。
点击立即获取Minitab
数据质量必须采用现代数据管理的新范式
必须更改数据质
来源【首席数据官】,更多内容/合作请关注「辉声辉语」公众号,送10G营销资料!
版权声明:本文内容来源互联网整理,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 jkhui22@126.com举报,一经查实,本站将立刻删除。