就拿ETL过程来说吧,你要把原始数据从各种数据库、各种服务器的不同业务日志归一化到同一类格式,要约定好分隔符,然后导入到分布式文件系统HDFS,甚至你还要和业务系统定义数据格式出规范,数据收集完
一味的解释 数据仓库 概念可能没意思,我们从不同角色出发吧
老板 :我是一家手机公司的老板,今天要向去董事局汇报,我要准备一份介绍过去三年的用户增长、用户留存、用户活跃度、手机里面每个APP使用率等情况的报表,假如下面没我下面没有BI,那我肯定就蒙逼了。。
BI : 我是一名非技术BI,我天天看竞品的分析报告,看双十一销量,看各种评论,知道自己的产品有哪些短板有哪些长处,我分析南北地域差异,国内外客户喜好,总之我在手机领域有着很强的行业解读能力和数据解读能力,我可以画出非常漂亮的图表和PPT。今天老板让我出一份报表,我还要去刷脸找ETL工程师帮我跑出这次报告的数据,基于这份数据我要给出一定的解读,为啥这个月手机卖得不如上个月,为啥用户流失越来越严重等等都是我要去做的。
ETL工程师 : 我是食物链最底层的苦逼ETL工程师大数据应用案例ppt大数据应用案例ppt,我会写shell、我会搭hadoop/hive/hbase、会写超复杂逻辑的sql,今天那个不会自己计算数据的BI又让我跑几个数据,我本想让她提需求流程的,但她说这是老板要的,要加急处理,我只能放下手头的活儿给她跑数据了,花了半个小时把数据跑好给她,希望能就这么交差吧。
如果你以为我每天就做这点事那你就错了,我平时的工作可不仅仅就是完成上面交给我的任务哦,我还负责数据ETL过程、数据建模、定时任务的分配等等,每件事都可以拿出来写本书。
就拿ETL过程来说吧,你要把原始数据从各种数据库、各种服务器的不同业务日志归一化到同一类格式,要约定好分隔符,然后导入到分布式文件系统HDFS,甚至你还要和业务系统定义数据格式出规范,数据收集完,你还得出中间表,数据过滤,格式统一,ID统一,维度统一,通过不同的数据现象进行数据,完了,你就得出一些日报周报之类的数据了,这时候你要按照需求把数据组织成一定的格式然后导Mysql、或者HBASE等等。
总之你就是需要把数据各种收集、各种处理、然后各种导入导出,是不是很有意思?
不过这些数据仓库都非常初级,其中ETL工程师可发挥的空间太多了
1、正常情况下,老板 —> BI —> ETL 出一份报告,这中间能否BI直接去计算数据?sql太复杂,那么可不可以一切数据标签化,BI甚至老板要什么就选什么?
2、ETL工程师可以把数据收集自动化、可以规范业务日志格式、可以将一切都配置化,但是这些都是基于N+1的,也就是说今天的发生了什么一定要到明天才能看到,那么有没有一个系统能把数据分析做到实时或者准实时?参考双十一大屏,马总要是到12号才能知道成交了多少笔不劈了那帮做数据的才怪。
3、目前绝大部分分析系统都基于离线计算(HADOOP/ODPS),那这里有个问题了,运营或BI想看个数据还得你离线慢腾腾跑完才能看到,那么有没有一个系统可以支持你再大的数据量,再复杂的逻辑,毫秒出数据?
我没有提到的还有算法工程师、大数据运维等等,数据仓库的概念很广很大,但在大数据应用面前也不值一提。
如果把数据价值分层,这里分层的办法很多,我只
来源【首席数据官】,更多内容/合作请关注「辉声辉语」公众号,送10G营销资料!
版权声明:本文内容来源互联网整理,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 jkhui22@126.com举报,一经查实,本站将立刻删除。