如果觉得好看那就赶紧撸起来。要是没有那还是往下看吧
PyEcharts
Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。这个也非常强大,算是我比较喜欢的一个,有兴趣一起见证它的魅力。
win安装方法:pip install pyecharts
这个文档特别友好哦!强烈推荐。
Bokeh
Bokeh是一个Python交互式可视化库,支持现代化web浏览器展示(图表可以输出为JSON对象,HTML文档或者可交互的网络应用)。它提供风格优雅、简洁的D3.js的图形化样式,并将此功能扩展到高性能交互的数据集,数据流上。使用Bokeh可以快速便捷地创建交互式绘图、仪表板和数据应用程序等。 Bokeh能与NumPy,Pandas,Blaze等大部分数组或表格式的数据结构完美结合。
Bokeh官网
win安装方法:pip install bokeh
HoloViews
HoloViews是一个开源的Python库,可以用非常少的代码行中完成数据分析和可视化,它将matplotlib和Bokeh结合了起来。
HoloViews官网
win安装方法:pip install HoloViews
Altair
Altair是Python的一个公认的统计可视化库。它的API简单、友好、一致,并建立在强大的vega - lite(交互式图形语法)之上。Altair API不包含实际的可视化呈现代码,而是按照vega - lite规范发出JSON数据结构。由此产生的数据可以在用户界面中呈现,这种优雅的简单性产生了漂亮且有效的可视化效果,且只需很少的代码。
数据源是一个DataFrame,它由不同数据类型的列组成。DataFrame是一种整洁的格式,其中的行与样本相对应,而列与观察到的变量相对应。数据通过数据转换映射到使用组的视觉属性(位置、颜色、大小、形状、面板等)。
Altair文档
win安装方法:pip install Altair)
PyQtGraph
PyQtGraph是在PyQt4 / PySide和numpy上构建的纯 python的GUI图形库。PyQtGraph完全是在python中编写的,是一个非常有能力的图形系统,可以进行大量的数据处理,数字运算;使用了Qt的GraphicsView框架优化和简化了工作流程,实现以最少的工作量完成数据可视化,且速度也非常快。
PyQtGraph官网
win安装方法:pip install PyQtGraph
ggplot
ggplot是基于R的ggplot2和图形语法的Python的绘图系统,实现了更少的代码绘制更专业的图形。
它使用一个高级且富有表现力的API来实现线,点等元素的添加,颜色的更改等不同类型的可视化组件的组合或添加数据可视化,而不需要重复使用相同的代码,然而这对那些试图进行高度定制的的来说,ggplot并不是最好的选择,尽管它也可以制作一些非常复杂、好看的图形。
ggplot与pandas紧密联系。如果你打算使用ggplot,最好将数据保存在DataFrames中。
因为他基于R语言,所以R语言也有这个库。
ggplot文档
win安装方法:pip install ggplot‑0.11.5‑py2.py3‑none‑any.whl
pygal
pygal是一种开放标准的矢量图形语言,它基于XML(Extensible Markup Language),可以生成多个输出格式的高分辨率Web图形页面数据可视化,还支持给定数据的html表导出。用户可以直接用代码来描绘图像,可以用任何文字处理工具打开SVG图像,通过改变部分代码来使图像具有交互功能,并且可以插入到HTML中通过浏览器来观看。
pygal官网
win安装方法:python -m pip install --user pygal==1.7
VisPy
VisPy是一个用于交互式科学可视化的Python库,快速、可伸缩、且易于使用,是一个高性能的交互式2维, 3维数据可视化库,利用了现代图形处理单元(gpu)的计算能力,通过OpenGL库来显示非常大的数据集。
VisPy官网
win安装方法:pip install VisPy
NetworkX
NetworkX是一个Python包,用于创建、操纵和研究复杂网络的结构、以及学习复杂网络的结构、功能及其动力学。
NetworkX提供了适合各种数据结构的图表、二合字母和多重图,还有大量标准的图算法,网络结构和分析措施,可以产生随机网络、合成网络或经典网络,且节点可以是文本、图像、XML记录等,并提供了一些示例数据(如权重,时间序列)。
NetworkX测试的代码覆盖率超过90%,是一个多样化,易于教学,能快速生成图形的Python平台。
NetworkX中文手册
win安装方法:pip install networkx
Plotly
Plotly的Python graphing library在网上提供了交互式的、公开的,高质量的图表集,可与R、python、matlab等软件对接。它拥有在别的库中很难找到的几种图表类型,如等值线图,树形图和三维图表等,图标类型也十分丰富,申请了API密钥后,可以一键将统计图形同步到云端。但美中不足的是,打开国外网站会比较费时,且一个账号只能创建25个图表,除非你升级或删除一些图表。
Plotly官网
win安装方法:pip install plotly
mpld3
mpld3基于python的graphing library和D3js,汇集了Matplotlib流行的项目的JavaScript库,用于创建web交互式数据可视化。通过一个简单的API,将matplotlib图形导出为HTML代码,这些HTML代码可以在浏览器内使用。
mpld3官网
win安装方法:pip install mpld3
python-igraph
Python界面的igraph高性能图形库,主要针对复杂的网络研究和分析。这个主要是用于绘制关系图的。
python-igraph文档
win安装方法:pip install python-igraph
missingno
做监督学习算法时,难免会碰到混乱的数据集,缺失的值,当缺失比例很小时,可直接对缺失记录进行舍弃或进行手工处理,missingno提供了一个小型的灵活的、易于使用的数据可视化和实用工具集,能够通过图像快速评估数据缺失的情况,而不是在数据表里面步履维艰。可以根据数据的完整度对数据进行排序或过滤,还可以根据热度图或树状图来考虑对数据进行修正。
missingno 是基于matplotlib建造的一个模块,所以它出图速度很快,并且能够灵活的处理pandas数据。
missingno 官方:未找到
win安装方法:pip install missingno
Mayavi2
Mayavi2是一个通用的、跨平台的三维科学数据可视化工具。可以在二维和三维空间中显示标量、向量和张量数据。可通过自定义源、模块和数据过滤器轻松扩展。Mayavi2也可以作为一个绘图引擎,生成matplotlib或gnuplot脚本,也可以作为其他应用程序的交互式可视化的库,将生成的图片嵌入到其他应用程序中。
Mayavi2官网
win安装方法:pip install mayavi
它能够画出这种图像:
Leather
Leather一种可读且用户界面友好的API,新手也能快速掌握。图像成品非常基础,适用于所有的数据类型,针对探索性图表进行了优化,产生与比例无关的SVG图,这样在你调整图像大小的时候就不会损失图像质量
Leather文档
win安装方法:pip install leather
Gleam
Gleam允许只利用Python构建数据的交互式,生成可视化的网络应用。无需具备HTML CSS或JaveScript知识,就能使用任一种Python可视化库控制输入。当你创建一个图表的时候,你可以在上面加上一个域,让任何人都可以实时地玩转你的数据,让你的数据更通俗易懂。
Gleam文档
win安装方法:pip install Gleam
地图类
有一些库对于绘制地图、经纬度坐标点等比较友好。
g
来源【首席数据官】,更多内容/合作请关注「辉声辉语」公众号,送10G营销资料!
版权声明:本文内容来源互联网整理,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 jkhui22@126.com举报,一经查实,本站将立刻删除。