SPSS分析技术:条件Logistic回归模型;配伍组设计的实验数据如何利用SPSS进行条件逻辑回归分析
在医学等研究目的极度细化,但是研究对象(人)异常复杂的领域,实验设计是需要异常谨慎小心的。前面专门写过一篇文章介绍常用的实验设计方法:
数据分析技术:常用实验设计方法介绍;选择合理的实验设计方法是科学研究成功的基础
通过不同实验设计方案获得的数据,其数据分析方法也有很大的区别。今天我们要介绍的是配伍设计获得的实验数据,如何利用SPSS进行条件Logistic回归模型分析。
条件逻辑回归模型
实验设计方法文章中介绍了如何通过巧妙的实验设计来控制非实验处理因素,从而使实验结果更加的准确。例如,很多的医学实验会采用病例对照实验,采取1:1或者1:N配比的方法来选择实验对象,即一个病例和一个对照或一个病例和N个对照,使得病例和对照在除了实验因素以外的其它非实验因素尽可能相同,这样的实验设计方法称为配对实验。通过配对试验设计获得的数据如果采用逻辑回归模型分析,应当使用条件(配对)逻辑回归模型。下表是按1:1配对设计收到上来的实验数据:
配对实验设计中,每一个配对组都包括病例组和对照组,采集他们的m项指标数值(m个实验因素),从x1到xm,那么该实验设计的第i配对组的条件逻辑回归模型可以表示为:
可以发现,不同配对组间,m个实验因素对因变量logit(P)的影响效果是相同的,它们对应的回归系数a1实验数据分析,……,am完全相同。不同配对组的回归模型的区别在于常数项bi,也就是截距,反映了非实验因素对因变量的影响程度不同。
配对实验设计将每个配对组分成病例组和对照组,如果将两个组的指标数值相减,那么就可以将非实验因素造成的不同配对组间的截距差异抵消,再将这些相减后的指标数值代入逻辑回归模型。最终得到的条件逻辑回归模型中是没有常数项的,如下式所示:
SPSS没有为条件逻辑回归模型设置专门的菜单选项,而是将该功能整合进入多元逻辑回归的菜单项中。当SPSS发现因变量中只有一个数值时,就会启动条件逻辑回归模型分析(病例组是否患病变量的数字代号是1,对照组的为0实验数据分析,选入对话框的因变量等于病例组减去对照组,所以因变量都为1)。此外,所有的自变量是相减后产生的,所以都要选为协变量,而不是根据原来的数据类型有的选为因子,有的选为协变量。这种条件逻辑回归分析方法只适用于1:1的配对组实验数据处理。
案例分析
某课题组的研究方向是子宫内膜癌发生机制。经过前期的研究基础,他们发现雌激素的摄入量与患子宫内膜癌有关,为了弄清楚该推测是否正确,该课题组对退休妇女进行调查。课题组采用的实验方案是配对实验,为了排除非实验因素的影响,在选择对照组样本时,需要满足以下条件:与病例组(患有子宫内膜癌)患者的年龄相差不超过一岁,婚姻状况相同,居住在同一小区。考察的实验因素(自变量)包括是否服用雌激素、体重、胆囊病史、服用其他非雌激素药物。共收集到63个配对组数据,如下图所示:
分析步骤
1、选择菜单【分析】-【回归】-【多元Logistic】,在跳出的对话框进行如下操作:将是否患病选为因变量,将相减后的体重、是否服用雌激素、是否有胆囊炎病史和是否服用非磁性激素药物选为协变量(自变量)。
2、点击【模型】按钮,因为通过配对实验设计得到的数据,需要用条件逻辑回归模型来分析,而模型不存在常数项,因此需要在模型对话框中,将默认选中的模型截距取消。
3、点击继续,然后点击确定,输出结果。
结果解释
1、警告提示;结果首先会出现一个警告提示:因变量只具有一个有效值,将拟合条件Logistic回归模型,这个和我们前面介绍的内容相同。
2、模型拟合信息;与其它逻辑回归分析一样,分析结果会输出模型的拟合信息,对数似然检验的显著性小于0.05,可以说明拟合的模型中,至少有一个自变量的回归系数不等于0,拟合的模型是有效模型。结果同时输出三个伪R方值,它们的值
来源【首席数据官】,更多内容/合作请关注「辉声辉语」公众号,送10G营销资料!
版权声明:本文内容来源互联网整理,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 jkhui22@126.com举报,一经查实,本站将立刻删除。