首席数据官

Hi, 请登录

数据分析指标如何业务化?

在很多的工作场景中,我们都会需要“用数据说话”,这时肯定就离不开指标!但现实是很多指标是用错了的!但对于指标,你们是否有太多的疑惑:

1、分析相对库存,库存天数?库存周数?库存月数?用哪个?

2、销售部门,要不要背利润完成率指标?

3、计算连带率,是否要剔除退货订单?

4、老板胡乱设定指标怎么办?各部门指标不统一如何解决?

……

用数据说话数据业务化,是一个好习惯!但如果指标没定好,不统一,也会导致各说各的,大家沟通都不在同一个频道,致使工作低效,也无法让数据产生管理价值。

问题:怎样去确定指标,怎样对指标进行定义?核心:基于业务目的来确定指标和指标定义!有些指标是用来绩效考核的,有些指标是负责追踪的们,还有一些指标是用来分析的......

有了这个核心思想,我们在定指标过程中遇到的问题,都会得到解决。例如:如分析相对库存的指标,可以根据对象来确定指标的时间跨度:快消品用库存天数,服装等用库存周数,耐消品用库存月数(即库销比)

销售部门背不背利润完成率的问题,可以根据场景决定权来取舍指标:销售代表和城市经理可以不背利润指标,因为他们几乎没有利润决定权;但大区经理和总经理就可以有利润指标了。

为了让大家更深入地理解业务化指标制定的问题,以下将为大家展开更系统地讲解。

01根据时间属性确定指标

时间是天然的属性,我们的业务经营都会随着时间的变化而变化,所以根据时间属性来确定指标是最基本的,最常见的做法。

1、按时间维度区分指标

这个很好理解,时间维度可以是年、月、日、周等,具体可以根据业务目的来选择使用。例如:

日销售额、月销售额、年销售额

日完成率、月完成率、年完成率

日活跃用户量(DAU)、周活跃用户量(WAU)、月活跃用户量(MAU)

次日留存、7日留存、30日留存、周留存、月留存

年利率、月利率、日利率

……

2、按业务发展阶段区分指标

随着时间发展,企业的发展也会经历不同的阶段,常见的如:

拓展期:此时企业的策略以拓展市场为主,所以主要可以用增量指标,如新增用户数、新开店铺数、新增会员数等。

成熟期:此时企业的策略以稳定发展为主,所以主要可以用存量指标,如店均销售,平效人效等。

02 根据人货场梳理指标体系

人货场的立体思维,我们在之前就讲过,今天就不累述了。对于大零售行业来说,大部分业务问题都可以从人、货、场三个维度来思考。无论是线上还是线下数据业务化,人、货、场都是零售营运的核心三要素!

数据业务化_业务化产业化_移动之家数据业务发烧友俱乐部

例如一个零售品牌企业,要梳理指标体系,怎么用人货场梳理指标呢?人:可以划分为员工、顾客;货:可以根据商品的流动来划分:计划、采购、配货、调拨、回收、物流;场:可以划分为渠道、店铺等。

人货场下一级的划分方法,可以灵活地根据每个企业的具体情况去灵活调整,这样就梳理出来了业务的分析架构。然后还需要继续深入去进行拆解,以下继续讲解梳理指标体系。

1、人

既然划分为员工、顾客这两大类,接下来你是否能定指标了?如果还不能确定指标,就可以尝试继续往下去拆!

例如员工,从人事架构上可以再分为基层员工、管理层,他们背的指标是可以有不一样的。

基层员工:完成率、销售额……

管理层:完成率、销售额、利润率、员工流失率……

如果你拆分为基层员工还不能直接定指标,那就可以继续按职能类型拆下去,例如销售类、服务类、技术类等。

销售类:完成率、销售额、连带率……

服务类:满意度、投诉率、平均接待时长……

技术类:出错频率、问题解决率、交付及时率……

员工方面指标的拆分,基本上只要拆分到职能类型,结合其工作职责,就能把指标梳理出来。

再来看看顾客方面的指标拆分,继续往下拆,最简单的就可以拆成新顾客、老顾客。但这里我们可以再精细化一些,因为老顾客也会分为常来的、不怎么来的、不再来的,这样就能把老顾客再分拆得更精细一些。

所以顾客就可以拆为:

新顾客:成交率、开卡率(入会率)……

活跃会员:购买频率、销售额……

沉默会员:沉默天数、激活率……

睡眠会员:睡眠天数、激活率……

流失会员:流失占比、激活率……

顾客方面指标的拆分,按以上的拆法,结合你对每一部分顾客的工作内容,就可以把指标梳理出来了。

2、货

前面讲到,我们是可以按货品的流转拆分成计划、采购、配货、调拨、回收、物流,其实类似上面在员工方面指标拆分的方式,这六个货品流转的过程,也代表着相应的工作职能,根据各职能类型的定位就可以辅助我们确定后续的指标。

计划:负责做计划的,就要看你的计划完成率,计划执行率(指执行到什么程度)、计划流失率(指有计划但没执行的情况)

采购:采购职能,可以从三方面去梳理--价格、时效、到货。价格--采购成本降低率,时效--订单准时率,到货--订单满足率。

配货:配货工作主要就是及时、准确、合理

调拨:调拨工作主要就是及时、费用评估

回收:回收主要就是看回收率

物流:订单执行率、订单满足率、准时交货率、订单效应周期

3、场

假设是一个购物中心的场,场的动线、陈列都可以往下拆出指标,还可以进行场内的品牌关联分析,即消费者买2个品牌以上的情况。

以上按人、货、场立体思维拆解指标的方法,其实在很多行业都是相通的,具体根据行业、公司、实际业务情况做适当调整就行。

给大家展示一个我做的例子,这是以诊断店铺生意为目的,人货场指标体系的案例:

03 将指标过程化更利于业务化

要定出业务化的指标,有时我们还可以考虑把指标过程化!

首先可以梳理业务发生、开展的过程,把思路整理好,例如我们之前讲过的消费品过程思维逻辑:

根据这个过程我们可以拆分成如下的业务指标:

然后就可以把销售额这一个指标过程化,这样当你要追踪销售额的时候,你就可以追踪等号右侧的那些指标,只要任何一个指标有增长的,都是对销售有正向作用的!

当然,如果按杜邦分析的结构写出来,思维会更清晰,是一个逐层分解的过程:

可见,先分析业务过程,然后把关键指标过程化,拆解出来的

试看结束,如继续查看请付费↓↓↓↓
打赏0.5元才能查看本内容,立即打赏

来源【首席数据官】,更多内容/合作请关注「辉声辉语」公众号,送10G营销资料!

版权声明:本文内容来源互联网整理,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 jkhui22@126.com举报,一经查实,本站将立刻删除。

相关推荐

二维码
评论