首席数据官

Hi, 请登录

如何理解描述统计学和推断统计学在探索数量规律性方面的作用

知识点整理

面向考试学习,虽然不挂科,但只是应付考试o(╥﹏╥)o

简述统计学的基本概念

统计学是研究如何收集、整理、分析和解释涉及社会、经济、管理问题的数据,并对研究对象进行统计推断的一门科学。

人们往往将统计学误解为数据资料的收集以及对这些数据作一些简单的均值、百分比等运算,或用图和表等形式加以表示。

其实这些仅是统计学工作的一小部分。统计学还包括假设检验、回归分析、时间序列分析、方差分析等许多工作。

统计学的研究方法有哪些?它们有怎样的关系?

必考(* ̄︶ ̄)

主要方法有两个:

(1) 描述统计:搜集由试验或调查所获得的资料,进行整理、归类,计算出各种用于说明总体数量特征的数据,并运用图形或表格的形式将它们显示出来。

(2) 推断统计:指利用概率论的理论,根据试验或调查获得的样本信息科学地推断总体的数量特征。

关系:描述统计和推断统计都是统计方法的两个组成部分,前者是统计学的基础,后者是现代统计学的主要内容。

如何理解描述统计学和推断统计学在探索数量规律性方面的作用

描述统计学方法主要包括利用获得的数据,绘制统计图(直方图、条形图、饼图、雷达图等),并计算一些数字特征值(均值、方差、中位数、调和均值、偏态系数等)。

人们根据这些统计图可以比较直观地对研究对象的规律有一个大体的粗略的认识,而通过数字特征值则可以从数据的集中趋势、分散程度、偏态情况等方面对研究对象的存在和演变规律有一个基本的了解。

推断统计学方法主要包括利用获得的样本数据,进行区间估计、假设检验、回归分析、方差分析、时间序列分析等。

人们根据这些样本数据的分析结果,对研究对象的总体进行统计推断,包括推断研究对象的分布规律、推断不同因素间的相关性、确定多个因素间的统计关系、判断多个总体间的差异性等。

统计学的发展阶段及特点

统计学的发展经历了三个阶段:古典统计学、近代统计学、现代统计学。每个阶段的特点如下:

古典统计学:这个时代大致是从 17 世纪中叶至 19 世纪初叶,其代表学派是“政治算术派”和“国势学派”,其中,“国势学派”最早提出了“统计学”的名词。

近代统计学:大致是从 18 世纪末到 19 世纪末。著名的大数法则、最小平方法、相关与回归分析、指数分析法、时间数列分析法以及正态分布等理论都是这个时期建立和发展起来的。代表学派主要有数理统计学派和社会统计学派。

现代统计学时代:多元统计分析、现代时间序列分析、贝叶斯统计、非参数统计等。同时,各种统计软件如 SPSS、SAS、MATLAB、 R 语言在趋于完善的同时,也加大了统计分析功能,如数据挖掘功能。

简述中心极限定理

必考(* ̄︶ ̄)

假设检验的基本原理及显著水平

假设检验依据的原理是小概率原理,小概率 a 为显著性水平

一个完整的假设检验包含的步骤

必考(* ̄︶ ̄)

假设检验分为四个步骤:

(1)提出假设(原假设和备择假设);

(2)选择合适的统计量及相应的抽样分布;

(3)选择显著性水平a,确定原假设H0的接受域和拒绝域;

(4)计算检验统计量a的值(可省略)。

(5)最后做出判断(作出统计决策)。

方差分析的基本思想和原理

方差分析就是针对一定因素分析总体的各个因素水平是否有差异。通过对因素水平间方差与因素水平内方差的比较,当这两个方差的比值较小时,方差分析的结果可以认为总体均值相同,否则,方差分析的结果可以认为总体均值不相同。

方差分析的基本假定

方差分析的前提条件是讨论的总体服从正态分布,其各个总体的方差相等,并且选择的样本是相互独立的。

方差分析的基本步骤

方差分析的步骤

(1)建立原假设和备择假设;

(2)选择显著性水平;

(3)确定决策点;

(4)计算并作出决策

简述x^2(卡方)统计量的构造及计算步骤

拟合优度检验及如何确定x^2拟合优度检验中的自由度

简述列联表独立性检验的步骤

解释总平方和、回归平方和、残差平方和的含义

好像考(* ̄︶ ̄)

简述决定系数的含义和作用

相关系数的平方是决定系数,其衡量的是变量y中有多大比例能用变量x来解释。

简述相关系数显著性检验的步骤

什么是时间序列及分类

时间序列是指一个变量的观测值按照时间顺序排列而成的序列,它反映了现象动态变化的过程和特点,是研究事物发展趋势、规律以及进行预测的依据。

按照观察值的表现形式,时间序列可以分为绝对数时间序列、相对数时间序列和平均数时间序列。

时间序列的组成因素及模型

时间序列的组成因素包括长期趋势,季节波动,循环波动和不规则波动这四种,其中前三个是系统的,最后一个是非系统的。

在统计学上,时间序列一般有两种模型:乘法模型和加法模型。

乘法模型是假设时间序列各个构成部分对序列的影响均按照比例变化。

加法模型是假设这四种因素对时间序列的影响是可加的

对时间序列进行平滑以描述其趋势的方法

管理统计学数据分析_学大数据都是学什么_单籍向老庄学管理最有中国味的管理之道

可以用移动平均法和指数平滑法来对时间序列进行平滑以描述序列的趋势。

移动平均法是采用逐项递移的方法分别计算一系列移动的序时平均数,形成一个新的派生序时平均数时间序列,

指数平滑法通过对历史时间数列进行逐层平滑计算,从而消除随机因素的影响,识别现象基本变化趋势,并以此预测未来。

什么是指数

指数是描述报告期(或报告点)价格、数量或价值与基期(或基准点)相比的相对变化程度的指标。按计入指数项目数目的差异可将指数分为个体指数和综合指数。

个体指数:反映某一项目或变量变动的相对数。

综合指数:反映多个项目或变量综合变动的相对数。

什么是聚类分析及作用

聚类分析主要用于辨别具有相似性的事物,并根据彼此不同的特性加以聚类,使同一类事物具有高度的相似性,不同类的事物有较大的差异性,聚类分析能够从现有的样本数据出发,按照它们的亲疏程度分成若干类,并通过变量与变量的连接状况,揭示在同一类别中不同变量或样本的亲疏程度。

五种距离及定义

类间距离计算方法

最短距离连接法,最长距离连接法,类间平均距离连接法,类内平均距离连接法,重心聚类法等。

标准化处理方法

(1)标准分(Z Scores)

(2) -1 到 1 标准化(Range -1 to1)

(3)0 到 1 标准化(Range 0 to1)

(4)最大值为 1 的标准化(Maximum magnitude of1)

(5)均值标准化(Mean of 1)

(6)标准差标准化(Standard Deviation of 1)

因子分析的步骤

好像考(* ̄︶ ̄)

因子分析的基本步骤:

(1)根据具体问题,判断待分析的若干原始变量是否适合作因子分析,并采用某些检验方法来判断数据是否符合分析要求;

(2)选择提取公因子的方法,并按一定标准确定提取公因子的数目;

(3)考察公因子的可解释性,并在必要时进行因子旋转,以寻求最佳的解释方式;

(4)计算出因子得分等中间指标,进一步分析使用

双因素方差分析表

超简单,而且必考(* ̄︶ ̄)恭喜你!

n = k*b

SSE = SST-SSR-SSC

测定季节变动的趋势-循环剔除法的基本思想和步骤

必考(* ̄︶ ̄)

思想:消除趋势因素,再用平均的方法消除不规则变动

方法步骤:

(1)计算平均项数等于季节周期 L 的移动平均数,以消除季节变动 S

(2)原数列各项数据除以移动平均序列对应时间的数据,得消除趋势和循环变动的序列

(3)将各年同月(或同季)的比率数据平均,以消除不规则变动 I,在分别除以总平均数,即得季节变动比率 S。

(4)对季节比率的调整

比较两种公式编制出来的销售量指数和价格指数的差异

由上面计算得:拉氏指数大于帕氏指数,从实际资料看,当价格和销售量呈反方向变动的某段时间内,根据同一项资料计算的拉氏指数大于帕氏指数;反之某段时间内价格与销售量呈同方向变动,根据同一项资料计算的拉式指数小于帕氏指数

计算可决系数R^2,并解释它的含义

方差分析表:

总离差平方和:SST

回归平方和:SSR

残差平方和:SSE

多重样本决定系数 R^2:SSR/SST

R^2的取值范围在[0,1]之间,R ^ 2越趋近与1说明回归方差拟合的越好;R^2越趋近与0说明回归方差拟合的越差。

检验回归方程的线性关系是否显著

F检验用来检验回归方程线性关系是否显著,其假设为:H0:回归方程线性关系不显著;H1:回归方程线性关系显著

t检验用来检验回归系数的显著性,其假设为H0:B=0;H1:B!=0;

1,对多元回归方程的整体检验,就是看自变量x1…xn是从整体上对随机变量y有明显的影响,自变量与因变量的线性关系是否显著

2,具体方法,将回归离差平方和SSR与残差平方和SSE比较,应用F检验分析二者之间的差别是否显著,如果显著存在线性关系

(1)提出假设:

H0:B1=B2=…Bm=0(m:多少个因变量)

H1:至少有一个回归系数不等于0

如果不能拒绝原假设,说明回归模型对因变量没有显著的预测能力,拒绝原假设说明至少一个自变量能预测因变量y的显著性

(2)计算检验统计量F

F=(回归平方和SSR/自由度df) / (残差平方和SSE/(n-m-1))

(3)确定显著水平a和分子自由度m,分母自由度n-m-1,找出临界值Fa,a为显著水平

(4)作出决策:若F>Fa,拒绝H0(说明线性关系显著),若F t,拒绝H0说明自变量x1与因变量y有线性关系,abs(t)

标准误差:自变量x的偏回归系数的抽样分布的标准差

你完全不用计算,老师数全给你,真爽,这题必考(* ̄︶ ̄)

相关与回归分析的关系?

联系:先进行相关分析再进行回归分析,只有在确定两变量存在着相关分析后,才能分析两变量的回归分析。两变量间的相关程度越大,研究回归才更有意义。通过相关分析,可以大致判断现象与现象之间配合什么数学模型建立回归方程

单籍向老庄学管理最有中国味的管理之道_学大数据都是学什么_管理统计学数据分析

区别: 分析的目的不同

相关分析主要分析变量之间有无关系,有多大程度的关系;

回归分析用于构建有联系的变量间的回归模型, 用于推理变量之间的因果关系。

相关分析的两个或两个以上的变量是随机变量。

回归分析中的自变量是确定性的变量。

方差分析中的基本假定是什么?简述方差分析的基本步骤。

(1)因素下各水平所对应的总体服从正态分布;

(2)这些正态总体有相同的方差;

(3)来自于不同水平下的样本相互独立。

步骤:

(1)提出假设;

(2)构造检验的统计量;

(3)统计决策。

Sample Test 要了解某市工业企业生产设备情况,则统计总体是 该市工业企业的全部生产设备若甲单位的平均数比乙单位的平均数小,但甲单位的标准差比乙单位的标准差大,则 甲单位的平均数代表性比较小

平均数的代表性可以用离散趋势来衡量。本题中已知标准差和平均数的关系,可采用最常用的离散系数,其越大,平均数的代表性就越小。公式为 v=s/x,由已知得Vσ甲>Vσ乙,即甲单位的平均数代表性比较小。

一个统计总体单位 可以有多个标志

标志反映总体单位的特征或属性的名称,故总体单位可以有多个标志;统计指标反映现象总体数量特征的基本概念和具体数值的总称,故总体可以有多个统计指标。

总体单位属于统计标志的直接承担者,属于载体;统计标志依附于总体单位并说明总体单位的属性和特征。依附于某个总体单位的标志可以有多个。

统计总体简称“总体”。统计所要研究的事物的全体,由许多具有某种共同属性或特征的个别事物组成。组成总体的个别事物称为总体单位。

统计标志简称标志,是指统计总体各单位所具有的共同特征的名称。

从不同角度考察,每个总体单位可以有许多特征.

总体单位是统计标志的直接承担者,是载体;统计标志依附于总体单位并说明总体单位的属性和特征。依附于某个总体单位的标志可以有多个。

分类:1、按变异情况,可分为不变标志和变异标志。2、按其性质,可以分为品质标志和数量标志。

一个统计总体可以有多个指标,一个总体单位(个体)可以有多个标志。 标志是说明总体单位特征的概念,而说明总体特征的概念称为指标。

总体单位的标志和总体的指标是可以有多个的。 比如说统计总体是中国大学生,总体单位就是每一个中国大学生,标志可以有性别,籍贯,年龄等等。

而又如统计总体是中国经济状况,统计指标可以有GDP,就业率等等多个指标。

品质标志的表现形式是 文字

1、品质标志:品质标志是说明总体单位的特征的,是不能用数值来表示的。

2、数量标志:数量标志是用绝对数形式表现的,用来反映总体单位规模大小、数量多少的统计指标,其数值大小一般随总体范围的大小而增减。

1、品质标志:按品质标志分组能直接反映事物间质的差别,给人以明确、具体的概念。

2、数量标志:反映总体规模大小、数量。

统计工作的各项任务归纳起来就是两条 调查统计和调查分析对上海港等十多个沿海大港口进行调查,以了解全国的港口吞吐量情况,则这种调查方式是 重点调查

重点调查是在调查对象中选择一部分重点单位进行调查的方法。

它是一种非全面调查,既可用于经常性调查,也可用于一次性调查。

其特点是所选择的调查对象的标志值在所要研究的标志总量中或占很大比重或有较大代表性,能反映总体的基本状况。

例如,要想了解工业贷款的增长原因,只要选择变化较大的有代表性的重点企业进行调查就可以分析清楚。

某连续变量分为五组:第一组为40~50;第二组为50~60;第三组为60~70;第四组为70~80;第五组为80以上。依习惯上规定 70在第四组,80在第五组某城市为了解决轻工业生产情况,要进行一次典型调查,在选送调查单位时,应选择生产情况(好、中、差)的企业。

典型调查选择的调查对象比抽样调查抽取的样本更具有代表性,但它也是通过从总体中选择个别对象进行调查研究从而推判总体的调查方法。相应地人们思维过程,也是从个别典型的认识到一般总体的认识,这符合人们认识客观事物从个别到一般的认识规律。同时,典型调查偏向从性质上分析调查对象,从总体特性认识调查对象,而几乎没有只对典型进行量的分析,却不进行质的判断的情况。这无疑是一种科学思维的方法。

该组的分组标志是 男、女(看行号)。

变量数列中各组频率的总和应该 =1。

在完成了构造与评价一个回归模型之后,我们可以 以给定自变量的值估计因变量的值。

回归直线方程 y = a+bx ,其中x为自

试看结束,如继续查看请付费↓↓↓↓
打赏0.5元才能查看本内容,立即打赏

来源【首席数据官】,更多内容/合作请关注「辉声辉语」公众号,送10G营销资料!

版权声明:本文内容来源互联网整理,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 jkhui22@126.com举报,一经查实,本站将立刻删除。

相关推荐

二维码
评论