首席数据官

Hi, 请登录

大数据可视化面临的挑战

拓展性和动态分析是可视化的两个最主要的挑战。举例来说,对大型动态数据,原本A问题的答案和B问题的答案也许在同时应对AB两个问题时就不适用了。基于可视化的方法迎接了四个挑战,并将它们转化成以下的机遇。

•多源:开发过程中需要尽可能多的数据源。

•体量:使用数据量很大的数据集开发,并从大数据中获得意义。

•质量:不仅为用户创建有吸引力的信息图和热点图大数据时代可视化和可视分析的机遇与挑战,还能通过大数据获取意见,创造商业价值。

•高速:企业不用再分批处理数据大数据时代可视化和可视分析的机遇与挑战,而是可以实时处理全部数据。

大数据可视化的多样性和异构性(结构化、半结构化和非结构化)是一个大问题。高速是大数据分析的要素。在大数据中,设计一个新的可视化工具并具有高效的索引并非易事。云计算和先进的图形用户界面更有助于发展大数据的扩展性。

可视化系统必须与非结构化的数据形式(如图表、表格、文本、树状图还有其他的元数据等)相抗衡,而大数据通常是以非结构化形式出现的。由于宽带限制和能源需求,可视化应该更贴近数据,并有效地提取有意义的信息。可视化软件应以原位的方式运行。由于大数据的容量问题,大规模并行化成为可视化过程的一个挑战。而并行可视化算法的难点则是如何将一个问题分解为多个可同时运行的独立的任务。

大数据的挑战与机遇_大数据带来的机遇和挑战_大数据时代可视化和可视分析的机遇与挑战

高效的数据可视化是大数据时代发展进程中关键的一部分。高维可视化越有效,识别出潜在的模式、相关性或离群值的概率越高。

大数据可视化还有以下几点问题:

•视觉噪声:在数据集中,大多数对象之间具有很强的相关性。用户无法把他们分离作为独立的对象来显示。

•信息丢失:减少可视数据集的方法是可行的,但是这会导致信息的丢失。

•高速图像变换:用户虽然能观察数据,却不能对数据强度变化做出反应。

•大型图像感知:数据可视化不仅受限于设备的长宽比和分辨率,也受限于现实世界的感受。

•高性能要求:在静态可视化几乎没有这个要求,因为可视化速度较低,性能的要求也不高。

可感知的交互的扩展性也是大数据可视化面临的挑战。可视化每个数据点都可能导致过度绘制而降低用户的辨识能力,通过抽样或过滤数据可以删去离群值。查询大规模数据库的数据可能导致高延迟,降低交互速率。

试看结束,如继续查看请付费↓↓↓↓
打赏0.5元才能查看本内容,立即打赏

来源【首席数据官】,更多内容/合作请关注「辉声辉语」公众号,送10G营销资料!

版权声明:本文内容来源互联网整理,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 jkhui22@126.com举报,一经查实,本站将立刻删除。

相关推荐

二维码
评论