首席数据官

Hi, 请登录

大数据技术和应用场景

什么是大数据

说起大数据,估计大家都觉得只听过概念大数据的应用场景,但是具体是什么东西,怎么定义,没有一个标准的东西,因为在我们的印象中好像很多公司都叫大数据公司,业务形态则有几百种,感觉不是很好理解,所以我建议还是从字面上来理解大数据,在维克托迈尔-舍恩伯格及肯尼斯库克耶编写的《大数据时代》提到了大数据的4个特征:

image.png

数量大,只有数据体量达到了PB级别以上,才能被称为大数据。1PB等于1024TB,1TB等于1024G,那么1PB等于1024*1024个G的数据。价值大,你如果有1PB以上的全国所有20-35年轻人的上网数据的时候,那么它自然就有了商业价值,比如通过分析这些数据,我们就知道这些人的爱好,进而指导产品的发展方向等等。如果有了全国几百万病人的数据,根据这些数据进行分析就能预测疾病的发生,这些都是大数据的价值。多样性,如果只有单一的数据,那么这些数据就没有了价值,比如只有单一的个人数据,或者单一的用户提交数据,这些数据还不能称为大数据,所以说大数据还需要是多样性的,比如当前的上网用户中,年龄,学历,爱好,性格等等每个人的特征都不一样,这个也就是大数据的多样性,当然了如果扩展到全国,那么数据的多样性会更强大数据的应用场景,每个地区,每个时间段,都会存在各种各样的数据多样性。速度快,就是通过算法对数据的逻辑处理速度非常快,1秒定律,可从各种类型的数据中快速获得高价值的信息,这一点也是和传统的数据挖掘技术有着本质的不同。大数据的行业应用

image.png

大数据无处不在,大数据应用于各个行业,包括金融、汽车、餐饮、电信、能源、体能和娱乐等在内的社会各行各业都已经融入了大数据的印迹。

大数据的价值,远远不止于此,大数据对各行各业的渗透,大大推动了社会生产和生活,未来必将产生重大而深远的影响。

大数据使用的技术

说起大数据,大数据有三个层数据采集、存储、计算三层。

大数据的应用场景_大数据 应用行业_大数据的应用场景

image.png

数据采集层,以App、Saas为代表的服务。

大数据基础阶段需掌握的技术有:Linux、Docker、KVM、MySQL基础、Oracle基础、MongoDB、Redis以及Hadoop、MapReduce、HDFS、Yarn等。

image.png

数据存储层,比如云存储,需掌握的技术有:HBase、Hive、Sqoop等。

比如:Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。HBase,是一个分布式的、面向列的开源数据库,可以认为是HDFS的封装,本质是数据存储、NoSQL数据库。

HBase是一种Key/Value系统,部署在HDFS上,克服了HDFS在随机读写这个方面的缺点,与Hadoop一样,HBase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。

大数据的应用场景_大数据的应用场景_大数据 应用行业

image.png

数据计算应用层,以数据为基础,为将来的移动社交、交通、教育,金融进行服务,涉及到大数据架构设计阶段需掌握的技术有:Flume分布式、Zookeeper、Kafka等,以及大数据实时计算阶段需掌握的技术有:Mahout、Spark、Storm。大数据的岗位

image.png

数据分析师Data analyst

指熟悉相关业务,熟练搭建数据分析框架,掌握和使用相关的分析常用工具和基本的分析方法,进行数据搜集、整理、分析,针对数据分析结论给管理销售运营提供指导意义的分析意见。数据架构师Data architect

对Hadoop解决方案的整个生命周期进行引导,包括需求分析,平台选择,技术架构设计,应用设计和开发,测试和部署。深入掌握如何编写MapReduce的作业及作业流的管理完成对数据的计算,并能够使用Hadoop提供的通用算法, 熟练掌握Hadoop整个生态系统的组件如: Yarn,HBase、Hive、Pig等重要组件,能够实现对平台监控、辅

试看结束,如继续查看请付费↓↓↓↓
打赏0.5元才能查看本内容,立即打赏

来源【首席数据官】,更多内容/合作请关注「辉声辉语」公众号,送10G营销资料!

版权声明:本文内容来源互联网整理,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 jkhui22@126.com举报,一经查实,本站将立刻删除。

相关推荐

二维码
评论