首席数据官

Hi, 请登录

大数据可视化面临哪些挑战

数据可视化在大数据场景下面临诸多新的挑战,包括数据规模、数据融合、图表绘制效率、图表表达能力、系统可扩展性、快速构建能力、数据分析与数据交互等。

大数据可视化面临哪些挑战

数据规模

大数据规模大、价值密度降低,受限于屏幕空间,所能显示的数据量有限。因此为了有效显示使用者所关注的数据和特征,需要采用有效的数据压缩方法。目前已有的方法针对数据本身进行采样或聚合,未考虑数据可视化的显示特性。近期一些学者提出了针对特定可视化场景的数据压缩方法。但是目前依然缺少通用的面向可视化的数据压缩方法,也缺少实际应用的产品。

数据融合

大数据的另一个表现是数据类型多样,常常分布于不同的数据库。如何融合不同来源、不同类型的数据,为使用者提供统一的可视化视角大数据时代可视化和可视分析的机遇与挑战,支持可视化的关联探索与关系挖掘,是一个重要的问题。其中涉及数据关联的自动发现、多类型数据可视化、知识图谱构建等多个技术问题。

图表绘制效率

随着数据规模的增加,图表可视化的效率问题越来越凸显。目前大数据时代可视化和可视分析的机遇与挑战,有些可视化产品开始采用WebGL借助GPU实现平行绘制。越来越多的数据可视化产品采用B/S架构,其性能一定程度上优先于浏览器;另外,由于跨终端需求越来越普遍,也对图表绘制提出了更多挑战。

图表表达能力

随着产生数据的来源增加,数据类型不断增加,数据使用者对于数据的交互需求越来越多,已有的数据可视化产品完全无法满足使用者的可视化需求,时常出现需要的可视化形式产品不支持或支持不够等问题。这就对于系统的图表表达能力提出了更高的要求,同时对于系统支持使用者的个性化定制提出了新的要求。

系统可扩展性

大数据对于数据可视化系统的扩展能力提出了新的挑战,系统的可扩展性将成为衡量一个大数据可视化系统的重要指标。

快速构建能力

大数据伴随着快速变化与增加的数据,如何帮助用户及时理解数据,发现问题,离不开数据可视化的快速构建能力,即根据使用者数据驱动的图表快速定制能力。数据在s级甚至ms级更新的情况下,有没有可能实现图表的秒级更新与快速定制。另外,图表定制后的快速共享与响应功能也将成为必要的系统功能。

数据分析

传统的BI工具主要集中在数据筛选、聚合及可视

试看结束,如继续查看请付费↓↓↓↓
打赏0.5元才能查看本内容,立即打赏

来源【首席数据官】,更多内容/合作请关注「辉声辉语」公众号,送10G营销资料!

版权声明:本文内容来源互联网整理,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 jkhui22@126.com举报,一经查实,本站将立刻删除。

相关推荐

二维码
评论