首席数据官

Hi, 请登录

Python 数据可视化之Matplotlib详解

Python 数据可视化之Matplotlib详解

目录Matplotlib总结

在深入研究这些库之前,首先,我们需要一个数据库来绘制数据。我们将在本完整教程中使用 tips database。让我们讨论一下这个数据库的简介。

使用的数据库

tips 数据库

tips 数据库是20世纪90年代初期顾客在餐厅的两个半月的小费记录。它包含 6 列可视化数据,例如 total_bill、tip、sex、smoker、day、time、size。

您可以从这里下载 tips 数据库。

例子:

import pandas as pd
# 读取数据库
data = pd.read_csv("tips.csv")
# 打印前 10 行
print(data.head(10))

输出:

Matplotlib

Matplotlib 是一个易于使用的低级数据可视化库,它构建在 NumPy 数组上。它由散点图、线图、直方图等各种图组成。 Matplotlib 提供了很大的灵活性。

要安装此库,请在终端中输入以下命令。

pip install matplotlib

安装 Matplotlib 后可视化数据,让我们看看使用这个库最常用的绘图。

散点图

散点图用于观察变量之间的关系,并用点来表示它们之间的关系。matplotlib 库中的scatter()方法用于绘制散点图。

例子:

import pandas as pd
import matplotlib.pyplot as plt
# 读取数据库
data = pd.read_csv("tips.csv")
# day 对 tip 的散点图
plt.scatter(data['day'], data['tip'])
# 为 Plot 添加标题
plt.title("Scatter Plot")
# 设置 X 和 Y 标签
plt.xlabel('Day')
plt.ylabel('Tip')
plt.show()

输出:

如果我们可以添加颜色并更改点的大小,则此图会更有意义。我们可以通过分别使用 scatter 函数的c 和 s参数来做到这一点。我们还可以使用colorbar()方法显示颜色条。

import pandas as pd
import matplotlib.pyplot as plt
# 读取数据库
data = pd.read_csv("tips.csv")
# day对tip的散点图
plt.scatter(data['day'], data['tip'], c=data['size'],
			s=data['total_bill'])
# 为Plot添加标题
plt.title("Scatter Plot")
# 设置 X 和 Y 标签
plt.xlabel('Day')
plt.ylabel('Tip')
plt.colorbar()
plt.show()

折线图

折线图用于表示不同轴上两个数据 X 和 Y 之间的关系。它是使用plot() 函数绘制的。让我们看看下面的例子。

可视化数据_大数据可视化_数据可视化 tableau

例子:

import pandas as pd
import matplotlib.pyplot as plt
# 读取数据库
data = pd.read_csv("tips.csv")
# day对tip的折线图
plt.plot(data['tip'])
plt.plot(data['size'])
# 为Plot添加标题
plt.title("Scatter Plot")
# 设置 X 和 Y 标签
plt.xlabel('Day')
plt.ylabel('Tip')
plt.show()

输出:

条形图

柱状图或叫条形图是表示与长度和高度的矩形条数据的类别是正比于它们所代表的值的图。它可以使用bar()方法创建。

例子:

import pandas as pd
import matplotlib.pyplot as plt
# 读取数据库
data = pd.read_csv("tips.csv")
# day对tip的条形图
plt.bar(data['day'], data['tip'])
plt.title("Bar Chart")
# 设置 X 和 Y 标签
plt.xlabel('Day')
plt.ylabel('Tip')
# 添加图例
plt.show()

输出:

直方图

直方图基本上是用来在一些基团的形式来表示数据。它是一种条形图,其中 X 轴表示 bin 范围,而 Y 轴提供有关频率的信息。的HIST()函数用于计算和创建直方图。在直方图中,如果我们传递分类数据,那么它将自动计算该数据的频率,即每个值出现的频率。

例子:

import pandas as pd
import matplotlib.pyplot as plt
# 读取数据库
data = pd.read_csv("tips.csv")
# total_bill直方图
plt.hist(data['total_bill'])
plt.title("Histogram")
# 添加图例
plt.show()

输出:

以上是关于 Matplotlib 使用 Python 进行数据可视化的全部示例,下一节我们来谈谈 Seaborn

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注我们的更多内容!

时间: 2021-10-30

Python 数据可视化之Bokeh详解

目录 安装 散点图 折线图 条形图 交互式数据可视化 Interactive Legends 添加小部件 按钮 复选框 单选按钮 总结 安装 要安装此类型,请在终端中输入以下命令. pip install bokeh 散点图 散点图中散景可以使用绘图模块的散射()方法被绘制.这里分别传递 x 和 y 坐标. 例子: # 导入模块 from bokeh.plotting import figure, output_file, show from bokeh.palettes import magm

Python 数据可视化之Seaborn详解

目录 安装 散点图 线图 条形图 直方图 总结 安装 要安装 seaborn,请在终端中输入以下命令. pip install seaborn Seaborn 建立在 Matplotlib 之上,因此它也可以与 Matplotlib 一起使用.一起使用 Matplotlib 和 Seaborn 是一个非常简单的过程.我们只需要像之前一样调用 Seaborn Plotting 函数,然后就可以使用 Matplotlib 的自定义函数了. 注意: Seaborn 加载了提示.虹膜等数据集,但在本教程

浅谈哪个Python库才最适合做数据可视化

数据可视化是任何探索性数据分析或报告的关键步骤,它可以让我们一眼就能洞察数据集.目前有许多非常好的商业智能工具,比如Tableau.googledatastudio和PowerBI,它们可以让我们轻松地创建图形. 然而,数据分析师或数据科学家还是习惯使用 Python 在 Jupyter notebook 上创建可视化效果.目前最流行的用于数据可视化的 Python 库:Matplotlib.Seaborn.plotlyexpress和Altair.每个可视化库都有自己的特点,没有完美的可视化库

可视化数据_数据可视化 tableau_大数据可视化

python数据可视化 – 利用Bokeh和Bottle.py在网页上展示你的数据

目录 1. 文章重点和项目介绍 2. 数据集研究和图表准备 2.1 导入数据集 2.2 绘制图表 图表1:2019年上海,北京,深圳三地的每天AQI变化曲线 图表2:2019年上海,北京,深圳三地的每月平均AQI对比 图表3:2017年到2019年北京每月平均AQI对比 3. Bottle网页应用 3.1 文件夹结构 3.2 路由 3.3 模板实现 3.4 启动网页服务 4. 将Bokeh和Bottle集成在一起 4.1 模板修改 4.2 Python代码集成 5. 部署应用到Heroku 6.

Django上使用数据可视化利器Bokeh解析

前言 最近在实验室做的一个项目中,需要把大量的数据在 web 端进行可视化,需要绘制各类图表.数据都是以 csv 文件的形式保存在服务器中.本来是想使用 D3.js 这个数据可视化前端库来画图,但是需要编写大量的 js 代码.后来发现了 Bokeh 这个框架,只需要在后端编写及少量的 Python 代码生成对应的 html 与 js,再传送到前端让浏览器解析,大大的减少了工作量. 1. 波形图 这里绘制一个包含了数千个数据点的信号波形图,绘制方法和 Matlab 如出一辙.学习成本为零. imp

Flask和pyecharts实现动态数据可视化

1:数据源 Hollywood Movie Dataset: 好莱坞2006-2011数据集 实验目的: 实现 统计2006-2011的数据综合统计情况,进行数据可视化 gitee地址: 1.数据例子: Film ,Major Studio,Budget 300,Warner Bros, 300,Warner Bros.,65 3:10 to Yum

利用Python绘制MySQL数据图实现数据可视化

本教程的所有Python代码可以在网上的IPython notebook中获取. 考虑在公司里使用Plotly?可以看一下Plotly的on-premises企业版.(注:On-premises是指软件运行在工作场所或公司内部,详见维基百科) 注意操作系统:尽管Windows或Mac用户也可以跟随本文操作,但本文假定你使用的是Ubuntu系统(Ubuntu桌面版或Ubuntu服务器版).如果你没有Ubuntu Server,你可以通过Amazon的Web服务建立一个云平台(阅读这份教程的前半部分

利用Python代码实现数据可视化的5种方法详解

前言 数据科学家并不逊色于艺术家.他们用数据可视化的方式绘画,试图展现数据内隐藏的模式或表达对数据的见解.更有趣的是,一旦接触到任何可视化的内容.数据时,人类会有更强烈的知觉.认知和交流. 数据可视化是数据科学家工作中的重要组成部分.在项目的早期阶段,你通常会进行探索性数据分析(Exploratory Data Analysis,EDA)以获取对数据的一些理解.创建可视化方法确实有助于使事情变得更加清晰易懂,特别是对于大型.高维数据集.在项目结束时,以清晰.简洁和引人注目的方式展现最终结果是非常

利用Python进行数据可视化常见的9种方法!超实用!

前言 如同艺术家们用绘画让人们更贴切的感知世界,数据可视化也能让人们更直观的传递数据所要表达的信息. 我们今天就分享一下如何用 Python 简单便捷的完成数据可视化. 其实利用 Python 可视化数据并不是很麻烦,因为 Python 中有两个专用于可视化的库 matplotlib 和 seaborn 能让我们很容易的完成任务. Matplotlib:基于Python的绘图库,提供完全的 2D 支持和部分 3D 图像支持.在跨平台和互动式环境中生成高质量数据时,matplotlib 会很有帮助

Pyth

试看结束,如继续查看请付费↓↓↓↓
打赏0.5元才能查看本内容,立即打赏

来源【首席数据官】,更多内容/合作请关注「辉声辉语」公众号,送10G营销资料!

版权声明:本文内容来源互联网整理,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 jkhui22@126.com举报,一经查实,本站将立刻删除。

相关推荐

二维码
评论